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Abstract-After reviewing briefly Prager's optimal-layout theory, the optimization of isolated
trusses is considered, and then optimality criteria are derived for the minimum-weight layout
of truss-grids. The theory is applied to simply supported circular truss-grids, whose radius does
not exceed a certain limiting value. Longer spans and other boundary conditions will be con­
sidered in Part II of this study, in which weight comparisons for various solutions are also
given. It will be shown that layout optimization for long-span systems results in most substantial
savings. In all problems considered, the optimal solution is derived analytically and confirmed
by three independent methods: namely, primal (variational) formulation, dual formulation and
direct minimization of the cost with respect to some geometrical parameters of the layout.
Although the problems discussed in this paper are formulated in the context of optimal plastic
design, the solutions obtained are statically determinate and hence they are also valid in optimal
elastic design for given permissible stresses.

INTRODUCTION

Optimization of the layout of long-span surface-structures is of practical significance
for two reasons: first, the self-weight of these systems constitutes a major part of the
load; second, the variation of the total weight is highly sensitive to changes in the
layout. Numerical methods are not very efficient in optimizing the layout of complex
grid-like systems because (a) a very large number of feasible members would have to
be considered for a reasonable accuracy, and (b) the number oflocal minima increases
exponentially with the number of potential members.

By using a continuum-type approximation and Prager's layout theory, however,
the problem is rendered convex, and hence the solution can be obtained by a direct
and systematic procedure.

This paper is concerned with the optimal layout of grillages consisting of a system
of intersecting vertical trusses whose depth is prescribed. Unlike earlier studies[l, 2],
the effect of both bending moment and shear force on the specific truss-weight is taken
into consideration.

Although the underlying theory was originally based on optimal plastic design,
least-weight plastic solutions for a single external load system (and even for additional
self-weight) often turn out to be kinematically admissible, and hence they are also valid
in optimal elastic design. In fact, Rozvany[3] and Olhoff[4] have shown that the optimal
layout of plastically designed grillages also minimizes the total weight for given per­
missible stress[3], given compliance[3] or given natural frequency[4] in elastic
design.

The optimality condition used in this paper was obtained in its original form by
Prager and Shield[5] and extended to self-weight by Rozvany[6]. An equivalent of the
Prager-Shield criterion can also be derived from theories of Masur[7], Mroz[8] or
Save[9].

In all solutions to be discussed, the minimum structural weight is calculated in­
dependently from both primal and dual formulation. This procedure provides a reliable
check on optimality.

The current investigation forms part of a broader project on optimal long-span
surface-structures which was initiated by the late Professor W. Pragert. Other long-

t This project was initiated by the late Professor W. Prager (Brown University). The first stage of this
project was carried out by Prof. Prager and G. l. N. Rozvany under a government-sponsored research contract
(SFB-64) in Stuttgart, West Germany.
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span structures investigated recently by Rozvany's research group include archgrids
and cable networks[ 10-14J as well as shell roofs[15-17J. Another important investi­
gation concerning the effect of self-weight on least-weight elastic structures was carried
out by Karihaloo and Hemp[ 18]. and opens up new avenues in this important area of
research. One of the latest developments in optimal-layout theory concerns constraints
on geometrical gradients[ 19]. This idea was pioneered recently, in the context of elastic
solid plates, by Niordson[20J,

The current paper demonstrates that relatively sophisticated mathematical meth­
ods can furnish results of practical significance in branches of structural mechanics in
which numerical methods have not been very successful. In Part I, Prager's optimal­
layout theory is reviewed, optimization ofa single truss discussed and optimality criteria
for long-span truss-grids presented. As an example, the optimal layout of circular simply
supported trusses within a limiting radius is derived. Part II discusses the optimal layout
of circular trusses having (i) simple supports and very long spans, or (ii) built-in edges.
Finally a weight comparison for various solutions is given.

A BRIEF REVIEW OF PRAGER'S LAYOUT THEORY

As Prager pointed out[21], optimization of the structural layout is a particularly
"challenging" problem because it involves an infinite number of possible topographies
or configurations, In solving such problems, Prager introduced a rather ingenious idea
which converts this complex problem of optimization into that of elastic (nonlinear)
analysis. This approach was then generalized and extended considerably by Rozvany's
research group.

Prager's layout theory is based on two underlying concepts, viz. the Prager-Shield
theory of optimal plastic design[3, 5J and the notion of "structural universe"[22-24].

In optimal plastic design[5J, the "specific cost" ljI, i.e. cost (or weight) per unit
length, area or volume can be expressed in terms of the "generalized" stresses (local
stresses or stress resultants) Q, and then the total "cost" <I> is to be minimized subject
to statical admissibility (S):

min<l> = r ljI(Q) dx,
Qs )D

(1)

where D is the structural domain referred to coordinates x.
With a view to illustrating the above concepts, consider a rectangular beam of

given depth d, but continuously varying width b. Then the plastic moment capacity is
±Mp = u y bd2/4, where U y is the yield stress. Since the beam weight per unit length
is ljI = "ybd where "y is the specific weight of the beam material, the "specific cost
function" can be expressed as ljI = kiM I with k = 4"y/uyd. In this problem, the
"generalized" stress Q is the bending moment M. The total "cost" (weight) then be­
comes <I> = It kiM I dx, where x is the distance along the beam axis and L is the
beam length. In designing a beam plastically, only static admissibility needs to be
satisfied. The latter consists of the equilibrium condition [d 2M/dx2 = - p(x) where p(x)
is the vertical load] and static boundary conditions (e.g. M = 0 at free ends and simple
supports).

The Prager-Shield condition[3, 5J converts the problem in eqn (1) into a strain-
stress relationship

on D. (2)

where qk is the "generalized" strain vector, (k) denotes kinematic admissibility, and
G is the subgradient[3, 25J. The condition (2) is a necessary and sufficient one for
convex specific cost function ljI(Q) with linear equilibrium equations. and converts a
problem of optimal design into a problem of elastic analysis.

The strain field q and corresponding displacement field u furnished by egn (2) are
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Fig. I. Review of optimal-layout theory.

fictitious quantities which facilitate greatly the optimization procedure but do not nec­
essarily represent the elastic displacements of the system. To distinguish them from
the latter, displacements arising from static-kinematic optimality criteria shall be termed
Pragerian displacement fields.

Considering the above beam example again, the relevant generalized strain q is
the beam curvature K = -d2uldx2 where u is the Pragerian beam deflection. The
subgradient G denotes a collection of first derivatives with respect to the stress com­
ponents G["'(Q)] = (a",/aQIo a",/aQ2' ... ,a",/aQn) if "'(Q) is differentiable at the stress
Qconsidered. At slope discontinuities, however, any convex combination ofthe slopes
for the adjacent "regimes" may be taken[3, 25]. (A stress regime is a set of stress
values, on the interior of which "'(Q) is differentiable.) Considering the specific cost
function", =kiM Iin the beam example, the specific cost function is shown graphically
in Fig. l(a) and the corresponding subgradient K = G[",(M)] in Fig. l(b). The same
relation can be expressed analytically as K = k (for M > 0), K = - k (for M < 0), - k
~ K ~ k (for M = 0). Note that K = G[",(M)] is nonunique at M = O.

The structural universe consists of all feasible members[22-24]. Since the Prager­
Shield condition [see eqn (2)] also gives a (usually nonunique) strain requirement for
a zero generalized stress vector [i.e. vanishing or nonoptimal members, see M = 0 in
Fig. 1(b)], its fulfillment for the entire structural universe constitutes a necessary and
sufficient condition of layout optimality for convex specific cost functions. The same
problem becomes usually nonconvex if it is expressed in terms of unknown geometrical
parameters. An advantage of Prager's layout theory is therefore the preservation of
convexity which is achieved by embedding the problem into a structural universe.
Moreover, this method automatically eliminates nonoptimal members from the solu-

SAS 22:1,(;
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tion. Figure l(c), for example, shows in plan view a very simple structural univer~e

consisting of two potential (or "candidate") members (intersecting simply supported
beams with a central point load). Using the specific cost function in Fig. l(a), the optimal
solution is clearly the case when the short beam (with the span Ld carries the entire
load and is subjected to positive moments throughout [Fig. 1(d)]. Then the optimal
moment-curvature relation in Fig. l(b) gives K = k, Ul = k(L1I8 - x2 /2) for the short
beam [Fig. l(e)]. The curvature for the longer beam [broken line in Fig. 1(e)] clearly
satisfies the condition K :0;:; k for M == 0 [Fig. l(b)] with U2 = k(L11L~)(L~/8 - x2 /2).
and thus the optimality of the above solution is established. Naturally, the optimal
solution in the above example is intuitively obvious.

It was shown by Rozvany[6] that an extended version of the Prager-Shield con­
dition automatically takes self-weight (dead load) into consideration if we modify the
original condition in the following form

onD, (3)

where Uk is the vertical Pragerian displacement.
In convex problems, the minimum total cost <l>min can be derived from primal

formulation (1) or from dual formulation

<l>min = mu~x<l>* = Iv [up - ~(q)] dx, (4)

where uk(x) is a kinematically admissible displacement, p(x) is the load and ~ is the
"complementary cost." Considering any strain field q satisfying the relation under eqn
(2), the complementary cost is given by

- [q
tV = Jo Q·dq.

To illustrate the notion of complementary cost, consider again a beam having a cost
function kiM I, but with prescribed minimum and maximum cross-sections [kMmm •

kMmax]. Ifthe modified specific cost tV is the cross-sectional area in excess of kMmin,
then the corresponding functional relation \jJ(M) is the one shown in Fig. 1(1) and the
strain-stress relation furnished by the Prager-Shield condition (2) is shown in Fig. l(g).
It can be seen from the latter that in this problem

and

• [K
tV = Jo MdK = KMmin

~ = kMmin + (K - k)Mmax

(for K~ k)

(for K ;;. k)

[(Fig. l(h)].
Before considering the layout optimization of truss-grids, the application of the

modified Prager-Shield condition (3) will be illustrated with an example involving a
single beam (truss).

AN INTRODUCTORY EXAMPLE

Consider a built-in beam [Fig. 2(a)] subject to a central-point load ip and its own
weight. It is assumed that the self-weight per unit length ~ is given by the specific cost
function

~ = k IM 1+ c 1111, (5)
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Fig. 2. Beam example: problem statement, sign conventions and optimality criteria.

where k and c are given constants, M is the beam bending moment and V is the shear
force. Equation (5) is a realistic specific cost function for trusses (or I-beams) because
the specific volume of the chords (flanges) is governed mostly by the bending moment
M and that of the web members (web) by the shear force V. We introduce the non­
dimensional notation M = pnMIP, x = k l12x (where x is the longitudinal coordinate),
V = VIP, L = Lkln , e = clkL, \II = ~/kll2p = 1M 1+ eL I V I, <I> = <l>IP = fD \II dx
(where <I> is the total beam weight).

It follows that the equilibrium equation becomes

M" = -(I M 1+ eL I V I> = -(I M I + eL IM' I), (6)

where primes denote differentiation with respect to x.

Derivation of optimality criteria from variational principles
Using first a variational formulation, the above problem can be expressed as

min <I> = fD [I M I + eL 1V 1+ u(M" + 1M 1+ cL I V I)l dx, (7)

where u is a Lagrangian multiplier.
Introducing the slack functions Sl through S4 and Lagrangian multipliers al through

a4, the specific cost components \III = 1M I and \112 = eL I V I = cL IM' I can be
incorporated in the integrand

min <I> = fD[(\II1 + \112)(1 + u) + al(-\III + M + SI) + a2(-\II1 - M

+ S2) + a3(-\II2 + eLM' + S3) + a4(-\II2 - eLM' + S4) + uM"] dx, (8)
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(for M ;;. 0),

(for M' ;;. 0),

52 = 0 (for M :$; 0),

54 = 0 (for M' :$; 0).
(9)

Then necessary conditions for minimality furnish ([3], pp. 18, 19, [24]) for variations
of tjJ(, tjJz, M and 5,:

a, + az = 1 + £I,

aj - az - cL(a3 - a4) = -£I",

a, = 0

It follows that

(for 5i ¥- 0), (for 5i = 0).

(I0)

(1 t)

(12)

(for M ¥- 0, V ¥- 0) - £I" :::: sgn M(I + £I) + sgn VcLu', (13)

(forM = 0, V¥-O) -(I + £I) + sgn VcLu':$; -u"~ 1 + £I + sgn VcLu', (14)

where V = -M'.
Moreover, transversality conditions together with eqns (8) and (10) ([13], pp. 21,

22) yield for built-in ends (with 8M ¥- 0):

- £I' lEND = cL(I + £I) sgn V,

and for both simple supports and built-in ends (with 8M' ¥- 0)

£I lEND = 0.

(15)

(16)

It will be seen from the next section that the optimality conditions in eqns (13)­
(16) reduce to those furnished by the modified Prager-Shield condition (3), if we in­
terpret the quantity u(x) as the Pragerian beam deflection.

Derivation of optimality criteria from the modified Prager-Shield condition
In using the Prager-Shield condition[5] and eqns (2) and (3) herein, the generalized

strain components "corresponding" to the generalized stress vector Q :::: (M, V) are
q :::: (K, ~) where Kis the curvature and ~ is the shear strain. The kinematically admissible
Pragerian deflections Uk can then be split into two components £I = Urn + £Iv such that

-£I';., = K and -u~ = ~. (17)

The sign conventions for the generalized stresses and strains are summarized in Figs.
2(b) and 2(c). Considering the nondimensional specific cost function

tjJ = IM I + cL I V I, (18)

the modified Prager-Shield condition (3) furnishes the optimal strain-stress relations:

K == sgn M(1 + £I)

~ :::: cL sgn V(1 + £I)

(for M ¥- 0),

(for V ¥- 0),

I K I~ 1 + £I (for M :::: 0),

I ~ I :$; cL(1 + £I) (for V :::: 0).
(19)

Since £I" = £I'M + u'v, eqns (17) and (19) imply the optimality conditions in eqns
(13) and (14). Moreover, kinematic admissibility implies eqns (15) and (16).
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Optimization using optimality criteria
A feasible statically admissible moment diagram and the corresponding deflection

diagram satisfying all optimality conditions are shown in Figs. 2(d) and 2(e). It can be
checked readily that the conditions

(for a ~ x ~ L) -uz = -(I + U2) + CLU2' u2(L) = 0, u2(L) = -cL (20)

imply

U2 = (euCL-X)/P){P cosh[(L - x)P] + a sinh[(L - x)P]) - I, (21)

with a = cL/2, P = (I + a2)1/2, Moreover, the conditions

(forO~x~a) -u'i = 1 + u. + cLuJ, u1(O) = -[1 + u\(O)]cL, u\(a) = u2(a)

are fulfilled by the deflection field

u\ = euCL-x)[A COS(XA) - a sin(xA)]6 - 1,

with

6 = {P cosh[(L - a)p] + a sinh[(L - a)p]}I{p[A cos(aA)

- a sin(aA)]},

Then the slope continuity condition ui (a) = u2(a) furnishes the following equation
for determining the optimal value of a:

6{a[A cos(Aa) - a sin(Aa)] + A[A sin(Aa) + a cos(Aa)]}

= + Psinh[(L - alP] + 2a cosh[(L - a)p] + (a2/p) sinh[(L - a)Pl. (23)

Check by primal formulation and differentiation
Considering the moment diagram in Fig. 2(d), equilibrium conditions require

(for 0 ~ x ~ a) M'i = -M1 + eLM; = -"', M1(O) = -1, M1(a) = 0, (24)

furnishing

Moreover

M\ = eUX[tan(Aa) COS(Ax) - sin(Ax)]/[A - a tan (Aa)]. (25)

(for a ~ x ~ L), M z = M 2 + cLM2 = -"', M 2(a) = 0, M2(a) = M1(a), (26)

implying after simplifications

M 2 = - (AlP) eUX{sinh[p(x - a)]/[A cos(Aa) - a sin(Aa)]}. (27)

The total cost <II can be calculated by integrating the specific cost a1on~ the beam
length

<Il = 2 LL (I M I + eLM') dx. (28)

However, the total weight of the beam is also given by taking twice the shear force
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(M') at the beam ends and subtracting the magnitude of the external load (nondimen­
sionally. 2.0):

<P = - 2M'(Ll - 2. (29)

The latter result can also be obtained by replacing the integrand in eqn (28) with
IjJ = - M" and then integrating by parts.

After simplifications, both eqns (28) and (29) furnish

<P = 2 eo.L(A/13){13 cosh[(a - L)13] + ex sinh[(L - a)13]}/[A cos(Aa) - ex sin (Aa)] - 2.

(30)

The stationary condition d<P/da ::= 0 then confirms the result in eqn (23).

Check on the minimum total cost by dual formulation
In the considered problem, the complementary cost is zero ($ = 0) since I K I ~

(l + u) and I ~ I ~ cL(l + u) [see Fig. l(b)]. Hence the minimum total cost <Pmm is
also given by [see eqn (4)]

(31)

It can be checked readily that eqn (31) with eqn (22) furnish the same result as
eqn (30).

The variation of the minimum total weight <Pmin as a function of the span Land
shear cost factor c [see eqns (28), (29) or (31)] is given in Fig. 3, and the optimal values
of a in Fig. 4.
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Fig. 3. Beam example: optimal cost values.
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OPTIMALITY CRITERIA FOR LONG·SPAN TRUSS-GRIDS

Problem formulation
A vertical load system p(x, y) defined on a horizontal plane domain D with co­

ordinates (x, y) is to be transmitted to the boundary of D by means of a system of
intersecting trusses. The distance between the two truss-chords is prescribed and con­
stant throughout the system, and thus the specific cost function for all trusses is the
one given in eqn (5).

The structural universe in this problem consists of trusses running in all horizontal
directions across any arbitrary point (x, y) of the domain D. For trusses with nonzero
moment and/or shear force, the optimality criteria are given in eqns (13) and (14).
Moreover, for vanishing (nonoptimal) trusses, the optimality conditions become

(for M = 0, V = 0) - (1 + u) - cLu' ~ - urI ~ 1 + u + cLu'. (32)

In the context of truss-grids, primes in eqns (13), (14) and (32) denote differentiation
with respect to the coordinate along the truss axis (say w).

Using the above optimality criteria, the optimal solution can be determined for
any boundary/loading condition. For trusses without self-weight, the optimality con­
ditions in eqns (13), (14) and (32) [or in eqn (19)] become simpler [replace (1 + u) by
unity, and u' by zero]. For this simpler class ofproblems, solutions for various boundary
shapes are already available [26]. Finally, if the specific cost is assumed to depend on
the moment only (1\1 = Ie IM I), then in eqns (13), (14) and (32) c = 0, and hence the
corresponding terms vanish. For this simple truss grid (grillage) problem, a most com­
prehensive theory was developed by Rozvany[3, 19, 22-24] and Prager.

Considering now long-span truss grids with self-weight, applications of the general
theory will be restricted in this paper to axially symmetric systems.
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Axially symmetric truss-grids
We consider now an axially symmetric truss-grid (Fig. 5) in which radial and cir­

cumferential trusses resist the corresponding moments (Mr and Me in Fig. 5), and the
shear force V is transmitted in the radial direction r. The radius of the edge of the truss
grid is denoted by R and the following nondimensional notation is introduced:

r :::: ,-7:'1/2, M; :::: kM/p (i :::: 1, 2),

C :::: c/kR, <t> :;= kCfJ/np:;= 2 LR

I/Ir dr,

1/1 :;= ~!p :;= I M I + cR I V I·

Then the static and kinematic conditions become

(rMr )" - M~ :::: - r - I/Ir,

Ka :;= -u' /r, Kr = _u",

(33)

(34)

where Ka and K r are the circumferential and radial curvatures, and u is the vertical
deflection. The nondimensional curvatures represent Kj :::: K/f< (i :::: e, r) and the "as­
sociated" deflection ugiven by the Prager-Shield condition (2) is already nondimen­
sional u :::: U.

Optimality criteria for the above problem can be derived readily from conditions
(13), (14) and (32) above. However, an additional direct derivation is also given herein.
Incorporating the static (equilibrium) condition by means of a Lagrangian multiplier u,
the extremum problem becomes

min <t> :::: 2 LR

HI Me I + IMr I + cRV) + u[(rMr )"

- M~ + r + IMa I + IMr I + cRV]}r dr. (35)

Remembering that rV :::: Me - (rM r )' and (rMr )" :::: 2M~ + rM~, necessary con­
ditions of minimality furnish [cf. eqns. (8)-(14) above]; (for M r # 0)

(for M r :::: 0)

(for Me # 0)

K r ::::: - u" ::::: (1 + u) sgn M r + cRu',

- (1 + u) + cRu' ~ - u" ~ (1 + u) + cRu',

Ka :::: - u' /r = (l + u)(sgn Me + cR/r) ,

Fig. 5. Axially symmetric truss-grids: layout and stress resultants.

(36)

(37)

(38)
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(for Me = 0)

(1 + u)( - r + cR) :s;; - u' :s;; (1 + u)(r + cR),

where u(r) is the Pragerian deflection.
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(39)

OPTIMAL SOLUTIONS FOR CIRCULAR SIMPLY SUPPORTED TRUSS·GRIDS

Solution for intermediate span lengths: purely circumferential moment field
It will be shown in this section that for shorter spans (R :s;; Rlim ) the optimal solution

consists of a purely circumferential moment field

Mr == 0, Me;;' O. (40)

Naturally, a system of one-way trusses only requires additional bracing to assure elastic
stability. However, it has been established computationally and experimentally[27] that
the structural weight of such bracing is relatively insignificant.

For the moment fields in eqn (40) with u(R) = 0, the condition (38) furnishes

u = e-[rl/2+cRr-R2(1/2+cl] - 1.

- u' Ir = (1 + u)(1 + cRlr) , du/(1 + u) = - (r + cR) dr, (41)

(42)

Since in this problem the complementary cost is zero (~ == 0), eqn (4) furnishes

<l>min = 2 LR
ur dr = 2{eR2

(\/2+cl - 1

where "err' denotes the error function

erf(r) = (2/y';) J: e- t2 dt.

However, for M r == 0, the optimality condition (37) must also be fulfilled for suf­
ficiency of the optimal solution. Substituting eqn (42) into the relevant part of (37),

we readily obtain

-(1 + u) + cRu' :s;; u", (44)

R :E; V2/(1 + c), Rlim = V2/(1 + c), (45)

where Rlim is the limiting radius for the above type of optimal solutions.

RUm
1.5

J21~~~~

0.1 0.3

Fig. 6. Limiting radius (Rlim) of support for the optimal solution with purely circumferential
moments as a function of the shear cost factor (c).
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It will be shown in Part II that for R> R lim , another type of solution becomes more
economical than the one with M r == O. The variation of the limiting radius R1im in terms
of the shear cost factor c is given in Fig. 6, and the corresponding Pragerian deflection
fields are given in Fig. 7.

The moment field for the above solution is given by eqn (33) with Mr == 0,

M~ = r(l + 1jJ) = r[l + Mo(l + cR/r)],

with the boundary condition Mo(O) = 0, eqn (46) then furnishes

[ -cR for e-(r2/2+cRr) dr + IJ/e-lr212+cRr) - 1

elr2/2+cRr) - v;T2 cR elr+cR)2/2{erf[(r + cR)/v2] - erf(cR/v2)} - 1.

The minimum total cost <l>min is then given by

or by

(46)

(47)

(48a)

(48b)

r
R

r
R

0.6

0.6

1.0

1.2

1.0

r
R

1.4

1.6
U

R2

Fig. 7. Pragerian deflection fields for circular trusses with R < R lim .
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Fig. 8. Optimal moment fields for trusses with R < Rum.

which confirm the result in eqn (43). The variation of Me(r) for various values of c is
shown in Fig. 8.

Check for special cases
For c = 0, eqn (45) furnishes

(49)

which confirms earlier results by Rozvany and Wang[2]. Moreover, for small values
of the radius (R - 0), a Taylor expansion of eqns (42) and (47), after neglecting infin­
itesimals of higher order, furnishes

u = (R 2 - r)/2, Ke = -u'lr ::: K r = _utI = 1,

Me = r/2.

(50)

(51)

This result satisfies the optimality and equilibrium conditions (36), (38) and (33) without
self-weight: (for M r > 0),

K r = 1,

(for Me> 0)

Ke = 1,

(for M r 55 0)

Me = r. (52)
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The solution in eqn (50) has been known for some time (e.g. [3], pp. 186, 187). It
is interesting to note that for short spans without self-weight, (52) would admit any
combination of positive radial and circumferential moments, whereas for longer spans
with self-weight (with R ~ R lim ) only Me ~ 0, Mr == 0 is optimal.

REFERENCES

I. G. 1. N. Rozvany and C. M. Wang, Extensions of Prager's layout theory. In Optimization Methods in
Structural Design (Edited by H. Eschenauerand N. 01hoff) , pp. 103-110. Wissenschaftsverlag, Mannheim
(983).

2. G. 1. N. Rozvany and C. M. Wang, Optimal layout theory: Allowance for self-weight, J. Eng. Mech.
Div. ASCE 1l0(EMI), 66-83 (1984).

3. G. I. N. Rozvany, Optimal Design of Flexural Systems. In English: Pergamon Press, Oxford (1976):
Ibid. In Russian: Stroiizdat, Moscow (980).

4. N. Olhoff and G. I. N. Rozvany, Optimal grillage layout for given natural frequency. J. Struct. Mech.
Div. ASCE 108(EM5), 971-974 (1982).

5. W. Prager and R. T. Shield, A general theory of optimal plastic design. J. Appl. Mech. 34(1), 184-186
(1967).

6. G. 1. N. Rozvany, Optimal plastic design: allowance for self-weight, J. Eng. Mech. Div. ASCE I03(EM6).
1165-1170 (1977).

7. E. F. Masur, Optimum stiffness and strength of elastic structures. J. Eng. Mech. Div. ASCE 96(EM5).
621-640 (1970).

8. Z. Mroz, Limit analysis of plastic structures subject to boundary variations. Arch. Mech. SIOSOW. 15,
63-76 (1963).

9. M. A. Save, A unified formulation of the theory of optimal plastic design with convex cost function. J.
Struct. Mech. 1(2),267-276 (1972).

10. G. I. N. Rozvany and W. Prager, A new class of optimization problems: optimal archgrids. Compo Meth.
Appl. Mech. Eng. 19(1), 127-150 (1979).

II. G. I. N. Rozvany, H. Nakamura and B. T. Kuhnell, Optimal archgrids: allowance for self-weight. Compo
Meth. Appl. Mech. Eng. 24(3), 287-304 (1980).

12. G. I. N. Rozvany, C. M. Wang and M. Dow, Prager structures: archgrids and cable networks of optimal
layout. Compo Meth. Appl. Meth. Eng. 31(1),91-114 (1982).

13. G. 1. N. Rozvany and C. M. Wang, On plane Prager structures (1). Int. J. Mech. Sci. 25(7), 519-527
(1983).

14. C. M. Wang and G. I. N. Rozvany, On plane Prager structures (11). Int. J. Mech. Sci. 25(7). 529-541
(1983).

15. W. Prager and G. 1. N. Rozvany, Optimal spherical cupola of uniform strength. Ing. Arch. 49(5/6). 287­
294 (1980).

16. G. I. N. Rozvany, H. Nakamura and M. Dow, Optimal spherical cupola of uniform strength-allowance
for self-weight. Ing. Arch. 51(3/4), 159-182 (1981).

17. H. Nakamura, M. Dow and G. I. N. Rozvany, Optimal cupolas of uniform strength: spherical M-shells
and axisymmetric T-shells. Ing. Arch. 52(1),91-114 (1982).

18. B. L. Karihaloo and W. S. Hemp, Maximum strength stiffness design of structural members in presence
of self-weight. Proc. R. Soc. (to appear).

19. G. I. N. Rozvany, Prager-Shield optimality criteria with bounded spatial gradients. J. Eng. Mech. Div.
ASCE llO(EMI), 129-137 (1984).

20. F. Niordson, Some new results regarding optimal design of elastic plates. In Optimization Methods in
Structural Design. Proc. Euromech. Col/ .• Siegen, 1982. (Edited by H. Eschenauer and N. Olhoff), pp.
308-386. Wissenschaftsverlag, Mannheim (1983).

21. W. Prager and G. I. N. Rozvany, Optimization of structural geometry. In Dynamical Systems. Proc.
Conf.. Gainesville, Florida, 1976. (Edited by A. R. Bednarek and L. Cesari), pp. 265-294. Academic,
New York (1977).

22. G. I. N. Rozvany, Optimality criteria for grids, shells and arches. In Optimization of Distributed Pa­
rameter Structures, Proc. NATO ASI, Iowa. 1980 (Edited by E. J. Haug and J. Cea), pp. 112-151. Sijthoff
and Noordhoff, Alphen aan der Rijn (1981).

23. G. I. N. Rozvany, A general theory ofoptimal structural layouts. Proc. Int. Symp. on Optimum Structural
Design. pp. 4.37-4.45. Univ. Arizona, Tucson, Arizona (1981).

24. G. I. N. Rozvany, Structural layout theory: the present state of knowledge. In New Directions in Optimum
Structural Design (Edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz), pp.
167-195. John Wiley, Chichester. England (1984).

25. G. 1. N. Rozvany, Variational methods and optimality criteria. In Optimization ofDistributed Parameter
Structures, Proc. NATA ASI. Iowa, 1980 (Edited by E. J. Haug and J. Cea), pp. 82-111. Sijthoff and
Noordhoff, Alphen aan der Rijn (1981).

26. G. I. N. Rozvany, Optimal beam layouts: allowance for cost of shear. Compo Meth. Appl. Mech. Eng.
19(1),49-58 (1979).

27. C. M. Wang, On Some New Classes of Optimal Structures. Ph.D. Thesis, Monash University (1982).

APPENDIX

A. Proof of identical result from primal and dual formulations: circular truss-grid.
Primal formulation. Substitution of eqn (47) into eqn (48b) yields directly eqn (43).
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Dual formulation. Substitution of eqn (42) into eqn (4) implies

<I> = 2 fo2 r(e-I,212+cR,-Rllll2+c)] - I) dr

= 2 foR (r + cR - cR) e- r,lI2+cR,' eRllll2+cl dr - R2

= 2 eRl(II2+c) foR [(r + cR) e- l ,ll2+cR,) - cR e-(,lI2+cR,)] dr.

The first term in the above integrand can be integrated directly:

foR (r + cR) e-{,lI2H'R,) dr = _e-IRlI2+cRl) + I,

and the second term is transformed into the folIowing form:

whose integral is an error function,

with t 2 = (r + CR)2/2.
The modified limits of integration then become

:m

(AI)

(A2)

(A3)

(A4)

Noting that

(r = 0) t) = cR/V2. (r = R) t2 = (R + cR)/V2. (A5)

I 'l L'l 10'1
e- Il d, = e- Il dt - e- Il dt,

n 0 0

and dr = V2 dr, integration of the last part of eqn (A3) furnishes

foR e(,+cR)l/2 dr = VTJi {erf[(R + cR)/V2] - erf(cR!Y'2)}.

Then eqn (AI) with eqns (A2), (A3) and (A7) implies eqn (43).

(A6)

(A7)

B. Proof that differentiation of the primal cost and the associated displacement field furnish the same
optimal "a" value

The stationary condition d<l>/da = 0 and eqn (30) imply

~ cos(a~) - a sin(a~)

(a2 - I) sin(a~) - a~ cos(a~)

13 cosh[(a - L)I3] + a sinh[(L - a)l3]
(I + a 2) sinh[(a - L)I3] - al3 cosh[(L - a)l3] ,

(AS)

which can also be obtained by rearranging eqn (23) in the form

M- ~ sin(a~) - a cos(a~)] 13{ -13 sinh[(L - a)l3] - a cosh[(L - a)l3]}
- a = - a.

~ cos(a~) - a sin(a~) 13 cosh[(L - a)l3] + a sinh[(L - a)l3]

Equation (A9) then implies eqn (AS).

(A9)


